Activity of opioid ligands in cells expressing cloned mu opioid receptors

نویسندگان

  • Parham Gharagozlou
  • Hasan Demirci
  • J David Clark
  • Jelveh Lameh
چکیده

BACKGROUND The aim of the present study was to describe the activity of a set of opioid drugs, including partial agonists, in a cell system expressing only mu opioid receptors. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cyclic adenosine mono phosphate (cAMP) production. Efficacies and potencies of these ligands were determined relative to the endogenous ligand beta-endorphin and the common mu agonist, morphine. RESULTS Among the ligands studied naltrexone, WIN 44,441 and SKF 10047, were classified as antagonists, while the remaining ligands were agonists. Agonist efficacy was assessed by determining the extent of inhibition of forskolin-stimulated cAMP production. The rank order of efficacy of the agonists was fentanyl = hydromorphone = beta-endorphin > etorphine = lofentanil = butorphanol = morphine = nalbuphine = nalorphine > cyclazocine = dezocine = metazocine >or= xorphanol. The rank order of potency of these ligands was different from that of their efficacies; etorphine > hydromorphone > dezocine > xorphanol = nalorphine = butorphanol = lofentanil > metazocine > nalbuphine > cyclazocine > fentanyl > morphine >>>> beta-endorphin. CONCLUSION These results elucidate the relative activities of a set of opioid ligands at mu opioid receptor and can serve as the initial step in a systematic study leading to understanding of the mode of action of opioid ligands at this receptor. Furthermore, these results can assist in understanding the physiological effect of many opioid ligands acting through mu opioid receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential effects of opioid agonists on G protein expression in CHO cells expressing cloned human opioid receptors.

Recent evidence indicates that agonist ligands of G protein coupled receptors (GPCR) can activate different signaling systems. Such "agonist-directed" signaling also occurs with opioid receptors. Previous work from our laboratory showed that chronic morphine, but not DAMGO, up-regulates the expression of Galpha12 and that both morphine and DAMGO decreased Galphai3 expression in CHO cells expres...

متن کامل

Differential binding domains of peptide and non-peptide ligands in the cloned rat kappa opioid receptor.

This study was to identify specific regions in kappa opioid receptors that accounted for binding selectivity of kappa ligands. Six chimeric mu/kappa receptors were constructed from cloned rat kappa and mu opioid receptors and transiently expressed in COS-1 cells. All six chimeric mu/kappa receptors bound [3H] diprenorphine with high affinities, indicating that these chimeras retain opioid recep...

متن کامل

Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation.

We have investigated the heterodimerization of ORL1 receptors and classical members of the opioid receptor family. All three classes of opioid receptors could be co-immunoprecipitated with ORL1 receptors from both transfected tsA-201 cell lysate and rat dorsal root ganglia lysate, suggesting that these receptors can form heterodimers. Consistent with this hypothesis, in cells expressing either ...

متن کامل

Direct agonist activity of tricyclic antidepressants at distinct opioid receptor subtypes.

Tricyclic antidepressants (TCAs) have been reported to interact with the opioid system, but their pharmacological activity at opioid receptors has not yet been elucidated. In the present study, we investigated the actions of amoxapine, amitriptyline, nortriptyline, desipramine, and imipramine at distinct cloned and native opioid receptors. In Chinese hamster ovary (CHO) cells expressing delta-o...

متن کامل

Endomorphin-1: induction of motor behavior and lack of receptor desensitization.

The endomorphins are recently discovered endogenous agonists for the mu-opioid receptor (Zadina et al., 1997). Endomorphins produce analgesia; however, their role in other brain functions has not been elucidated. We have investigated the behavioral effects of endomorphin-1 in the globus pallidus, a brain region that is rich in mu-opioid receptors and involved in motor control. Bilateral adminis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Pharmacology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2003